國(guó)外為什么喜歡用科學(xué)家的名字來命名定理?比如牛頓定理、歐幾里得定理、歐拉定理,還有畢達(dá)哥拉斯定理。
第一次聽到畢達(dá)哥拉斯定理簡(jiǎn)直是一頭霧水,我明明TOP10 985高校別業(yè),為什么從沒聽過畢達(dá)哥拉斯定理?
1 英文原意
勾股定理 Pythagoras' Theorem

2 英文解釋
In a right angled triangle: the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Pythagorean theorem, the well-known geometric theorem that the sum of the squares on the legs of a right triangle is equal to the square on the hypotenuse (the side opposite the right angle)—or, in familiar algebraic notation, a2+ b2= c2. Although the theorem has long been associated with Greek mathematician-philosopher Pythagoras (c. 570–500/490 BCE), it is actually far older. Four Babylonian tablets from circa 1900–1600 BCE indicate some knowledge of the theorem, with a very accurate calculation of the square root of 2 (the length of the hypotenuse of a right triangle with the length of both legs equal to 1) and lists of special integers known as Pythagorean triples that satisfy it (e.g., 3, 4, and 5; 32+ 42= 52, 9 + 16 = 25). The theorem is mentioned in the Baudhayana Sulba-sutra of India, which was written between 800 and 400 BCE. Nevertheless, the theorem came to be credited to Pythagoras. It is also proposition number 47 from Book I of Euclid’s Elements.
勾股定理,一個(gè)著名的幾何定理,即直角三角形兩直角邊的平方和等于斜邊(與直角相對(duì)的一側(cè))上的平方,或者用熟悉的代數(shù)符號(hào)來說,a2+ b2= c2。盡管該定理長(zhǎng)期以來一直與希臘數(shù)學(xué)家兼哲學(xué)家畢達(dá)哥拉斯(約公元前 570-500/490 年)聯(lián)系在一起,但實(shí)際上它要古老得多。大約公元前 1900 年至公元前 1600 年的四塊巴比倫泥板表明了對(duì)該定理的一些了解,其中非常準(zhǔn)確地計(jì)算了 2 的平方根(短邊長(zhǎng)度為1直角三角形的斜邊長(zhǎng)度為?2)和滿足它的特殊整數(shù)列表(稱為畢達(dá)哥拉斯三元組)(例如 3、4 和 5;32+ 42= 52,9 + 16 = 25)。該定理在公元前 800 年至公元前 400 年間寫成的印度 Baudhayana Sulba-sutra 中被提及。盡管如此,該定理還是被歸功于畢達(dá)哥拉斯。它也是歐幾里得《元素》第一卷中的第 47 號(hào)命題。
3 中文解釋
勾股定理,是一個(gè)基本的幾何定理,指直角三角形的兩條直角邊的平方和等于斜邊的平方。中國(guó)古代稱直角三角形為勾股形,并且直角邊中較小者為勾,另一長(zhǎng)直角邊為股,斜邊為弦,所以稱這個(gè)定理為勾股定理,也有人稱商高定理。

4 感謝體會(huì)
勾股定理在國(guó)外叫 Pythagoras' Theorem,本意是畢達(dá)哥拉斯定理,畢達(dá)哥拉斯是古希臘思想家、哲學(xué)家、數(shù)學(xué)家、科學(xué)家、占星師,是影響西方乃至世界的人物。
熱門跟貼