近期,天水師范大學/江蘇師范大學孟來生教授課題組在植物學主流期刊Plant Cell Environment(IF5-year=7.6,一區(qū)TOP期刊)發(fā)表了題為The interaction between ABA and sugar signaling regulates stomatal production in systemic leaves by controlling sucrose transport和The Different Concentrations of Applied Exogenous Sugars Widely Influence the Specificity, Significance and Physiological Relevance of Study Outcomings的兩篇綜述論文,并在Molecular Plant Pathology(IF5-year=6.0,一區(qū)TOP期刊)發(fā)表了題為Crosstalk between Ethylene and JA/ABA/Sugar Signaling in Plants under Physiological and Stress Conditions的一篇綜述論文。以上三篇綜述論文從不同角度深入解析了植物如何在復雜多變的環(huán)境中進化出不同的信號通路,并重點解析近年來許多研究由于沒有深刻理解這些信號通路進化過程的極端復雜性,從而得出誤導性的結論。



在復雜多變的自然環(huán)境下,如干旱、極端溫度、大風、鹽堿地、極端光等等,都會極大的影響著植物的生長發(fā)育以及產量。另外植物內源激素信號和營養(yǎng)信號的強弱也同樣程度的影響著植物的生長發(fā)育以及產量。例如,脫落酸ABA作為一種關鍵的植物激素,在應對非生物脅迫(如干旱鹽堿、大風和極端溫度等)以及影響植物生長發(fā)育中發(fā)揮著中心作用。而糖信號作為一種關鍵的營養(yǎng)信號在植物生長、發(fā)育和應對脅迫等方面也起著核心作用。在長期的進化過程中,植物已經(jīng)對特定的環(huán)境進化出不同的信號轉導通路,例如生理狀態(tài)下,植物有專門的信號轉導通路應對,而在干旱缺水的情況下,植物又有專門的一套應對通路。又如,在很多情況下,干旱誘導ABA急劇增加,導致氣孔密度減少,水分損失減少;但植物的生物量也隨之減少。但在Prosopis strombulifera中,干旱會誘導ABA急劇增加,氣孔密度增加。這個導致植物抗旱性減弱,但生物量增加,使得植物更為強壯,抵御不利環(huán)境的壓力增加(Reginato et al., 2013)。以上兩種截然不同的植物應對環(huán)境的策略由不同的信號轉導通路來承擔。這種現(xiàn)象也廣泛存在。
美國科學院院士斯坦福大學Bergmann課題組結論:低濃度糖抑制氣孔發(fā)育,而乙烯信號促進氣孔發(fā)育(Gong et al., 2021)。因此,糖信號和乙烯信號以相互拮抗的方式調控氣孔發(fā)育。基于這個結論,他們認為葡萄糖感受器HXK1和乙烯信號核心元件EIN3不參與糖信號和乙烯信號拮抗調控氣孔發(fā)育。通過深入分析這篇論文,孟來生課題組發(fā)現(xiàn):主要結論與他們課題組的相關研究(Bao et al., 2023),山東大學白明義課題組(Han et al., 2020, 2022)以及日本研究人員(Akita et al., 2013)的結論相沖突。這些課題組的研究結果顯示:低濃度糖促進氣孔發(fā)育,而高濃度糖抑制氣孔發(fā)育。
通過深入分析發(fā)現(xiàn),Bergmann課題組沒有弄清糖和乙烯信號相互拮抗調控植物發(fā)育是特異的和有特定條件的。已有的報道顯示,在擬南芥(Jeong et al., 2010),西蘭花(Nishikawa et al., 2005),水稻(Kobayashi and Saka., 2000),煙草(Philosoph-Hadas et al., 1985)等植物中發(fā)現(xiàn):低濃度糖和乙烯相互協(xié)同調控植物發(fā)育。而高濃度(或過量)糖和乙烯相互拮抗調控植物發(fā)育(Jang et al., 1997; Zhou et al., 1998; Moore et al., 2003; Cho et al., 2010; Karve et al., 2012)。Cho et al (2010)深入解析發(fā)現(xiàn):糖在低濃度跟乙烯信號沒有拮抗關系。
基于以上深入解析發(fā)現(xiàn):Bergmann課題組結論:低濃度糖抑制氣孔發(fā)育,而乙烯信號促進氣孔發(fā)育(Gong et al., 2021)是基于低糖和乙烯相拮抗調控氣孔發(fā)育。這個結論明顯與以上系列一流期刊論文結論相反。究其原因就是沒有弄清楚糖和乙烯信號相互拮抗調控植物發(fā)育是特異的和有特定條件的。因此,在這個錯誤結論基礎上又得出了一系列誤導性的結論(如:他們認為葡萄糖感受器HXK1和乙烯信號核心元件EIN3不參與糖信號和乙烯信號拮抗調控氣孔發(fā)育。)。
該系列論文受到國家自然科學基金(31960268),甘肅省重點研發(fā)計劃(23YFFE0001),和云南省科學院基礎基金資助(2023KYZX-15)的資助。
參考文獻:
Akita, K., Hasezawa, S. & Higaki, T. (2013) Breaking of Plant Stomatal One-Cell-Spacing Rule by Sugar Solution Immersion. PLoS ONE, 8, e72456.
Bao, Q.X., Mu, X.R., Tong, C., Li, C., Tao, W.Z., Zhao, S.T. et al. (2023) Sugar status in preexisting leaves determines systemic stomatal development within newly developing leaves. Proceedings of the National Academy of Sciences of the United States of America, 120(24), e2302854120.
Cho, Y.H., Sheen, J., & Yoo, S.D. (2010) Low glucose uncouples HXK1-dependent sugar signaling from stress and defense hormone ABA and C2H4 responses in Arabidopsis. Plant Physiology, 152(3), 1180–1182.
Gong, Y., Alassimone, J., Varnau, R., Sharma, N., Cheung, L.S. & Bergmann, D.C. (2021) Tuning self-renewal in the Arabidopsis stomatal lineage by hormone and nutrient regulation of asymmetric cell division. eLife, 10, e63335.
Han, C., Liu, Y., Shi, W., Qiao, Y., Wang, L., Tian, Y. et al. (2020) KIN10 promotes stomatal development through stabilization of the SPEECHLESS transcription factor. Nature Communications, 11(1), 4214.
Han, C., Qiao, Y., Yao, L., Hao, W., Liu, Y., Shi, W. et al. (2022) TOR and SnRK1 fine tune SPEECHLESS transcription and protein stability to optimize stomatal development in response to exogenously supplied sugar. The New phytologist, 234(1), 107–121.
Jang, J.C., León, P., Zhou, L. & Sheen, J. (1997) Hexokinase as a Sugar Sensor in Higher Plants. The Plant Cell, 9(1), 5–19.
Jeong, S.W., Das, P.K., Jeoung, S.C., Song, J.Y., Lee, H.K., Kim, Y.K. et al. (2010) Ethylene suppression of sugar-induced anthocyanin pigmentation in Arabidopsis. Plant Physiology, 154(3), 1514–1531.
Karve, A., Xia, X. & Moore, B. (2012) Arabidopsis Hexokinase-Like1 and Hexokinase1 Form a Critical Node in Mediating Plant Glucose and Ethylene Responses. Plant Physiology, 158(4), 1965–1975.
Kobayash, H. & Saka, H. (2000) Relationship between ethylene evolution and sucrose content in excised leaf blades of rice. Plant Production Science, 3(4), 398–403.
Moore, B., Zhou, L., Rolland, F., Hall, Q., Cheng, W.H., Liu, Y.X. et al. (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science, 300(5617), 332–336.
Nishikawa, F., Iwama, T., Kato, M., Hyodo, H., Ikoma, Y. & Yano, M. (2005) Effect of sugars on ethylene synthesis and responsiveness in harvested broccoli florets. Postharvest Biology and Technology, 36(2), 157–165.
Philosoph-Hadas, S., Meir, S. & Aharoni, N. (1985) Carbohydrates stimulate ethylene production in tobacco leaf discs. II. Sites of stimulation in the ethylene biosynthesis pathway. Plant Physiology, 78(1), 139–143.
Reginato, M. A., H. Reinoso, A. S. Llanes, and M. V. Luna. 2013. “Stomatal Abundance and Distribution in Prosopis strombulifera Plants Growing under Different Iso-Osmotic Salt Treatments.” American Journal of Plant Sciences 4, no. 12: 80-90.
Zhou, L., Jang, J. C., Jones, T. L. & Sheen, J. (1998) Glucose and ethylene signal transduction crosstalk Revealed by an Arabidopsis glucose-insensitive mutant. Proceedings of the National Academy of Sciences of the United States of America, 95(17), 10294–10299.
三篇論文鏈接:
https://onlinelibrary.wiley.com/doi/10.1111/pce.15191;https://onlinelibrary.wiley.com/doi/10.1111/pce.15388;https://bsppjournals.onlinelibrary.wiley.com/doi/10.1111/mpp.70048
熱門跟貼