打開網(wǎng)易新聞 查看精彩圖片

摘要

史蒂芬·沃爾夫勒姆(Stephen Wolfram)是我們這個時代大神級別的科學怪才,幾年前開啟了自己以計算統(tǒng)一整個物理學的「Wolfram Physics Project」。在這個項目中,他對智能尤其是意識的本質(zhì)也發(fā)表了自己深刻的見解:在宇宙的超圖網(wǎng)絡中,以計算視角看,凡足夠復雜的系統(tǒng)都具有智能,而意識本質(zhì)是對智能的降級——是一種計算受限下形成的第一人稱序列因果整合下的「連貫線索體驗」,所謂物理規(guī)律是觀察者算力不足導致平均化下的「可約化的口袋」:統(tǒng)計力學是對一群粒子的平均,相對論是對空間的平均,而量子力學是對世界分叉的平均。這意味著,物理規(guī)律的本質(zhì)也是一種意識的構(gòu)建。

關鍵詞:生命,意識,智能,復雜系統(tǒng),計算

Stephen Wolfram丨作者

十三維丨譯者

打開網(wǎng)易新聞 查看精彩圖片

文章題目:What Is Consciousness? Some New Perspectives from Our Physics Project 文章鏈接:https://writings.stephenwolfram.com/2021/03/what-is-consciousness-some-new-perspectives-from-our-physics-project/

一、 我們?nèi)绾握務撘庾R?

多年來,當我談到自己在計算宇宙(computational universe)中的發(fā)現(xiàn)、談到計算不可約性(computational irreducibility)以及我所提出的「計算等價性原理」(Principle of Computational Equivalence)時,人們總會問:「那這些對意識意味著什么?」而我往往會說:「那可是個難以捉摸的話題」。隨即我會開始談論生命、智能、意識這三者的關系。

我會提到:「什么是生命的抽象定義?」我們都知道地球上生命的表現(xiàn)形式——RNA、蛋白質(zhì)以及其他生化細節(jié)。但要怎么推廣到更一般的層面?什么才算普遍意義上的「生命」?我會辯稱:這其實就是「計算復雜性」(computational sophistication,相對于complexity,這是一種更積極精確的復雜)的體現(xiàn),而按照「計算等價性原理」的觀點,這種計算復雜性遍地都是。然后我再說到「智能」。我會論證,這其實也差不多:我們熟悉的是「人類智能」,可如果我們?nèi)コ橄蠡蜁l(fā)現(xiàn)那也不過是某種計算復雜性的體現(xiàn)——而它同樣到處存在。于是就很合理地說「天氣也有自己的『思想』」;只不過那種「思想」的細節(jié)和「目的」,與我們?nèi)祟愐延械慕?jīng)驗并不重合罷了。

在此之前,我一直是默認:對「意識」的理解也能像「生命」或「智能」一樣,自然而然地繼續(xù)這一套思路:如果用足夠抽象的方式去思考,那么「意識」只是一種計算復雜性的特征,因此在宇宙中隨處可見。然而,基于我們在物理項目(Physics Project)中的研究,尤其是對量子力學基礎所引發(fā)思考的影響,我開始意識到:意識的核心其實與前面的思路有著相當不同之處。是的,它的實現(xiàn)(implementation)當然需要計算的精巧與復雜。但它的本質(zhì)不光是「能發(fā)生什么」,更關乎我們?nèi)绾握喜⒔y(tǒng)一正在發(fā)生的一切,使之形成某種連貫性,從而讓我們得以產(chǎn)生「確定的念頭」或「明確的思考」。

換言之,與其說意識是要「超越」廣義的智能或一般的計算復雜性,毋寧說它是某種「降級」(step down)——即,基于僅使用有限(bounded)的計算資源,對宇宙進行簡化描述,從而達到我們所感知的那種「整體一致」的狀態(tài)。起初,這種基于有限計算量的意識定義是否能在我們的宇宙中自洽地存在并不明顯。而事實上,它能否存在似乎與支撐物理學的形式系統(tǒng)中的一些深層特征息息相關。

最終我們會發(fā)現(xiàn),宇宙中有許多東西從某種意義上說是「超越意識」的。但「意識」這一核心概念,對于我們?nèi)绾慰创兔枋鲇钪嬷陵P重要——在非常根本的層面上,它使我們所處的宇宙在我們看來擁有那樣的規(guī)律與行為方式。

有關于意識的討論,數(shù)百年來就從未停止過。而令我驚訝的是:隨著我們對計算宇宙的探索,尤其是隨著最近物理項目的新成果,似乎出現(xiàn)了能帶來全新視角的機會,而這些新視角又有望將有關意識的問題與更具體、更正式的科學思想相聯(lián)系。

不可否認,圍繞意識及其與我們新物理基礎的聯(lián)系,會有十分復雜的概念問題。此處我只能嘗試勾勒一些初步思路。當然,我所說的很多內(nèi)容或許能與已有的哲學或其他學科的觀點相呼應,但眼下我尚未來得及深入研究這些歷史脈絡,因而這里僅僅是對這些想法本身的闡釋。

打開網(wǎng)易新聞 查看精彩圖片

(宇宙的因果超圖網(wǎng)絡。Wolfram計算萬物視角下的生命、智能與意識)

  • 計算等價性原理:(The Principle of Computational Equivalence)任何看起來比較復雜的系統(tǒng),其復雜度都是相同的,且都達到了復雜性的極限——例如流體、社會系統(tǒng)、蟻群等,宇宙中其它極為復雜的系統(tǒng)與例如大腦復雜性是是相同的。

  • 計算不可約性(computational irreducibility):某種計算過程中的一種特性,無法通過更簡化的計算步驟來預測最終結(jié)果。

  • 因果不變性(causal invariance):宇宙系統(tǒng)中事件發(fā)生的順序可以不同,但所有可能的事件序列最終產(chǎn)生等效的歷史,使得整個因果關系網(wǎng)絡的整體結(jié)構(gòu)保持不變。

二、觀察者及所見的物理

在我們的模型中,宇宙在最底層滿是精巧的計算。最底層只是一大堆「空間原子」(atoms of space)的集合,它們之間的相互關聯(lián)在根據(jù)某條計算規(guī)則不斷更新。這種過程不可避免地帶有「計算不可約性」的特征,也就是說,想要「推演接下來會發(fā)生什么」,通常只能像系統(tǒng)本身一樣一步步運算,而無法找到省事的公式或捷徑。

可這樣一來,為什么我們所感知的宇宙看上去并沒有變得隨處都是復雜且不可預測的混亂?為什么我們依然能在其中看到秩序與規(guī)律?的確存在大量的計算不可約性,但我們還是能找到一些可約化的局部,并加以利用,從而得以用更簡單的方式來描述世界,也因此能夠成功且連貫地加以運用。我們物理項目的一個根本性發(fā)現(xiàn)是:二十世紀物理學的兩大支柱——廣義相對論與量子力學,恰恰對應了這樣兩個「可約化的口袋」(pockets of reducibility)。

這事兒有一個類比——事實證明,這個類比與我們所討論的基本計算現(xiàn)象是同一個問題的例子。想想氣體,比如空氣。歸根結(jié)底,氣體是無數(shù)分子在碰撞流動,出現(xiàn)各種復雜而不可約的計算過程??山y(tǒng)計力學有一個關鍵事實:如果我們只從宏觀上看它,就能用溫度、壓強這類性質(zhì)來對氣體進行有用的描述。它暗示了一種「可約化的口袋」:我們不用理會微觀分子那不可約的復雜運動,也能獲得對氣體整體性質(zhì)的把握。

怎么理解這個現(xiàn)象?一個思路能夠推廣:把我們對氣體的觀察想象成——我們把眾多分子的微觀狀態(tài)「合并」到了一起,只關注總體的聚合屬性。統(tǒng)計力學的專業(yè)用語會提到「粗?;?/strong>」(coarse graining)??稍谖覀冞@種計算化的框架下,就能很清楚地用計算的方式來刻畫這一點:在分子層面上,有不可約的計算在進行;而當觀察者想要「理解氣體發(fā)生了什么」,觀察者自身也在進行計算。關鍵點在于:如果觀察者的計算能力是有限的,就會在觀察結(jié)果上顯現(xiàn)出特定后果。在氣體的情形中,這個后果直接導致了熱力學第二定律的表現(xiàn)。

過去,人們常對熱力學第二定律的起源及其有效性感到困惑。但在新的視角下,我們發(fā)現(xiàn)第二定律其實是「底層計算不可約性」與「觀察者計算能力有限」這兩者共同作用的結(jié)果。如果觀察者能精確跟蹤每一個分子不可約的運動,就不會觀察到第二定律。第二定律所依賴的,是當觀察者由于某種可約化性而出現(xiàn)了一個更簡單的整體視野時,這才使熵總是趨于增加(換言之,就能從中觀察到一個宏觀的單向演化)。

那么再來看看物理空間。傳統(tǒng)觀點常把空間視作一種「可被整體描述」的數(shù)學對象。但在我們的物理模型中,空間實際上是由巨大數(shù)量的離散單元構(gòu)成;這些單元之間的連結(jié)方式會按某種復雜、不可約的運算規(guī)則演化??删拖駳怏w分子一樣,如果一個觀察者希望獲得對世界的連貫視圖,并且該觀察者只能使用有限的計算資源,那就會對觀察所得到的空間性質(zhì)提出一系列約束。而從我們的研究結(jié)果看,這些約束恰恰會自然地導出「相對論」那一套結(jié)論。

也就是說,對最底層的「空間原子」來說,廣義相對論是「計算不可約性」與「觀察者希望對宇宙形成連貫視角」這兩者之間的「博弈」所導致的必然產(chǎn)物

我們可以稍微補充一點技術細節(jié)。在我們的底層理論中,每一個空間最基本元素都按某些計算規(guī)則演化,這些規(guī)則會生成不可約的動態(tài)行為。但要是只看到這些不可約的部分,宇宙就仿佛支離破碎,每一部分都表現(xiàn)得不可預測。

可如果設想有一個觀察者,能夠從這些混亂中抓住某種整體連貫性,并將其視作一個明確的整體「空間」。那么這個觀察者有什么特征?首先,因為我們這個理論企圖描述整個宇宙,那么觀察者自然也包含在這個整體當中;觀察者同樣是由這些空間原子組成、遵循同樣規(guī)則演化的「嵌入式」部分。

這么一來,就立刻有了一個結(jié)論:在系統(tǒng)「內(nèi)部」,觀察者只能觀測到系統(tǒng)的某些方面。比方說,假設在整個宇宙里,任何時刻只會在某一個位置發(fā)生一次「更新」,就像圖靈機那樣,這個唯一的「更新點」在宇宙各處來回「跑」,有時更新一下觀察者的大腦,有時更新宇宙中的別的部分。仔細追蹤這種場景就能發(fā)現(xiàn):對一個「在系統(tǒng)內(nèi)部」的觀察者而言,他們能感知到的,只有事件之間的因果關系。他們無從判斷「某個事件具體是在什么時候發(fā)生的」,他們只能知道「哪個事件先于哪個事件」,也就是事件間的因果順序。這樣的理解是如何導致我們模型中的相對論不可避免的開端。

但要真正得到與廣義相對論形式相當?shù)慕Y(jié)論,還需要另外兩點。第一,如果觀察者想把那些大量的空間原子組合成「一個連貫的空間圖景」,就不能對每一個原子分開追蹤。他得給這些原子賦予一整套坐標,或者用相對論的話說,也就是定義一個「參考系」(reference frame),把很多空間點合并起來看。第二,如果觀察者的計算資源是有限的,就會對這個參考系的結(jié)構(gòu)施加約束:它不能細致到去捕捉每一個空間原子的不可約行為。

那么假設觀察者成功定義了某種參考系,宇宙接下來演化時,如何確保那個參考系在觀察者的描述中能持續(xù)保持一致性?關鍵在于我們相信(或要求)物理世界在底層要滿足某種我們稱為「因果不變性」(causal invariance)的性質(zhì)。規(guī)則描述了空間原子之間的關系是如何一步步更新的,而「因果不變性」要求:無論我們選擇什么次序去應用這些更新操作,最后得到的因果關聯(lián)結(jié)構(gòu)都是一樣的。

正是這一點,讓不同觀察者能夠選用不同的參考系,但仍然在感知上獲得同樣一致的宇宙動態(tài)。最終,我們得到一個非常明確的結(jié)論:若底層存在計算不可約性,同時規(guī)則具有因果不變性,那么任何期望以有限計算能力并形成連貫描述的觀察者,必然都會感知到滿足廣義相對論的宇宙。

不過,與前面提到的熱力學第二定律類似,這一結(jié)論依賴于我們確實有一個會「形成連貫感知」的觀察者。如果觀察者真的能逐個追蹤每個空間原子的不可約活動,就不會看到「廣義相對論」;只有當觀察者力圖簡化并整體把握宇宙時,廣義相對論才自然浮現(xiàn)。

三、量子觀察者

(The Quantum Observer)

那么量子力學又如何與觀察者關聯(lián)起來呢?令人大感意外的是,量子力學與「熱力學第二定律」和「廣義相對論」有著驚人的相似之處:它同樣源于觀察者想要對宇宙形成某種連貫視圖,而宇宙底層卻充滿了不可約的復雜。

在經(jīng)典物理中,我們通常假設在宇宙里發(fā)生的一切都沿著一條單獨的歷史線(thread of history)展開;可量子力學的要點在于:其實宇宙中存在不止一條歷史線——我們必須同時考慮多條歷史并行展開。而在我們的模型中,這一點幾乎是不可避免的。

在底層規(guī)則中,描述的是:如何在空間原子的超圖(hypergraph)上局部應用規(guī)則,從而更新它們之間的連接關系。但通常,這個超圖中有很多地方都可同時應用這些規(guī)則。如果我們把所有可能的應用方式都考慮進去,就能得到一個多分叉圖(multiway graph),其中包含了所有不同的可能歷史,有時它會發(fā)散(branching),有時又會匯合(merging)。

那么觀察者會如何感知這多條平行的演化?關鍵在于:觀察者自己也是這個多分叉系統(tǒng)的一部分!也就是說,如果宇宙在分叉,那么觀察者也在分叉。從本質(zhì)上說,問題就變成了:「一個『自己也在不斷分叉』的大腦,如何感知一個『在不斷分叉』的宇宙?」

想象一下,一個遠比自身規(guī)模更龐大的氣體,觀察者還能夠聚合、抽象出某種宏觀屬性;那么換到量子力學里,也有類似現(xiàn)象,只不過這次不是在物理空間里合并分子,而是在「分叉空間」(branchial space)里合并不同歷史分叉。

更具體地說,多分叉圖中所有可能歷史的狀態(tài),如果在某一時刻截一刀,就能得到一組節(jié)點,對應系統(tǒng)在那時刻的所有可能狀態(tài)。而多分叉圖的結(jié)構(gòu)本身定義了這些狀態(tài)彼此間的關系(比如通過它們有沒有共同祖先等)。如果我們把這些狀態(tài)在大尺度下展開,就可以認為它們被分布在某個分叉空間里。

在量子力學的語言中,分叉空間的幾何結(jié)構(gòu)實際上刻畫了不同量子態(tài)之間的糾纏分布,而在分叉空間里的坐標就類似于量子振幅的相位。我們?nèi)艨紤]量子系統(tǒng)的演化:從一組初始量子態(tài)出發(fā),沿著多分叉圖的各條歷史線去看它們在分叉空間中的走向。

可「量子觀察者」會如何理解這一過程?即使觀察者最初并沒有被分叉,但在時間推移后,他們無可避免地會在分叉空間里不斷散開,同時采樣一大片「歷史分叉」。若他們試圖對每條分叉逐一進行獨立跟蹤,就得面對不可約的復雜計算;毫無連貫視圖可言。這時候,就需要引入一種新的「觀測方式」:把計算彼此近鄰(computationally nearby)的那些分叉合并起來,借此為自己形成一種整體的、連貫的描述。和廣義相對論中的參考系類似,這里我們可以稱之為「量子參考系」(quantum frame),它是對分叉空間的一種連貫化表達。

那么,這種連貫的表達會是什么樣子?答案正是物理學家們在過去一個世紀中發(fā)展出來的那套量子力學描述。換言之,正如廣義相對論是我們對物理空間的大尺度約化描述那樣,量子力學是我們對分叉空間的大尺度約化描述——而這些約化都來自「嵌入式、計算能力有限的觀察者」企圖獲取連貫圖景的需求。

所以,觀察者「創(chuàng)造」了量子力學嗎?在某種意義上,是的:在多分叉圖里充斥著不可約的復雜過程。但如果有一個觀察者要對宇宙進行連貫描述,他就必須合并或「粗?;鼓切┓植?。只要這樣一做,他們的描述就會嚴格遵從量子力學。的確,宇宙中仍然在發(fā)生其他事情——只不過這類事情并不納入這種連貫描述的視野而已。

于是,如果有一個觀察者選定了一種「量子參考系」,把某些歷史分叉給合并,就能得到一幅連貫的世界圖景。那另外一個觀察者若選擇了不同的量子參考系,又會看到什么?傳統(tǒng)量子力學的形式體系里,一直都很難解釋:為何不同觀察者——盡管觀測方式不同——對宇宙運行的基本結(jié)論仍然一致?

而在我們的模型中,答案就呼之欲出了:和時空情形下的道理一樣,只要底層規(guī)則具有因果不變性,那么不管你選擇什么量子參考系,觀察結(jié)果在基本層面上都必定是一致且自洽的。換言之,因果不變性保證了不同觀察者對系統(tǒng)做出不同的測量時,量子力學還能夠維持整體一致。

接下來還有許多技術層面的細節(jié)。傳統(tǒng)量子力學的形式體系分為兩大塊:一是量子態(tài)隨時間的演化(也就是薛定諤方程或其它等價表述),二是「測量」過程。在我們的模型里,存在一個非常優(yōu)美的對應:物體在物理空間的運動(motion in space)與量子振幅的演化在結(jié)構(gòu)上是相似的,二者都可以理解為「測地線」(geodesic)的偏折都是由動量能量的存在所導致。只不過在經(jīng)典情形,這種偏折(也就是引力)發(fā)生在物理空間;而在量子情形,這種對應物(也就是費曼路徑積分中的相位變化)則發(fā)生在分叉空間中。換句話說,費曼路徑積分實際上就是「分叉空間」里對應于「愛因斯坦引力方程」的存在。

那量子測量呢?做一次測量,意味著要把對應于很多分叉的量子疊加態(tài)(superposition)給「縮減」到某個單一分叉,形成一個連貫的觀測結(jié)果。而一套「量子參考系」正好就提供了這樣的一種合并規(guī)則,規(guī)定了在哪些歷史分叉之間做合并。它本身不是一個「物理實體」,而是一種對世界的描述方式。

我們可以用另一種形式理解:設想我們?yōu)榱搜芯坑^察者能否獲得連貫的世界描述,就把量子參考系選定下來,并按照它的要求合并分叉。若把這一多分叉圖比作一個邏輯或形式系統(tǒng)中的命題推理過程,那么這種「合并」的操作就好比對推理分叉進行某種「完成」(completion),每一次合并都相當于進行一次測量步驟。把所有必需的「完成」全做了,就能得到 Jonathan Gorard 所提出的「完備化詮釋」(Completion Interpretation)量子力學。

只要底層規(guī)則確實滿足因果不變性,實際上我們就無需在物理層面「真正」去做這些合并,因為不同的歷史分叉最終對系統(tǒng)內(nèi)部的觀測者來說也會給出相同的可觀測結(jié)果。但如果我們想「快照」式地看看系統(tǒng)此刻在干什么,我們就可以人為地選擇一個量子參考系,并做相應的合并。在整個系統(tǒng)「外部」觀察時,這些合并看起來并沒有改變系統(tǒng);不過,「從觀察者主觀視角」看,這些合并卻相當「真實」,因為它們就是觀察者理解系統(tǒng)的那種必需途徑。

換句話說,為了讓一個「自身也在多分叉演化」的大腦獲得連貫的世界圖景,就得讓它在某個量子參考系下做測量與合并,從不可約的底層動態(tài)中「裁出」一塊可約化的切面。而結(jié)果就是——正如我們所知——它必然遵從量子力學。

由此可見,要讓一個計算能力有限的觀察者對宇宙形成連貫的描述,宇宙雖然蘊含大量不可約性,但最后他們能感知到的卻必須滿足兩大核心物理定律:廣義相對論和量子力學。

不過也要指出,是否存在一個能從宇宙中得到連貫感知的觀察者,這在一開始并非顯而易見。但現(xiàn)在我們知道的是:如果真有這樣的觀察者,那么它們必然能「提煉出」那兩大基礎物理定律。若不存在能形成連貫感知的觀察者,那么宇宙也就不會呈現(xiàn)出我們熟悉的、可總結(jié)的規(guī)律,更不會有我們所說的「物理學」或一般意義上的科學。

四、那么,什么是「意識」?

我們?nèi)祟愺w驗這個世界,到底有何特別之處?在某種意義上,單單是「我們對任何事物都會有所體驗」這一點就已很獨特了。外面的世界按自己的規(guī)則在演化,包含著大量不可約的計算。但我們用自己有限的腦力(或心智資源)卻能拼湊出對世界的某種連貫模型,甚至能在大腦里產(chǎn)生「對宇宙的一些確定想法」。同理,我們不僅能對外部世界形成連貫想法(form coherent thoughts),還能對自己的大腦或心智中發(fā)生的計算形成連貫想法。

不過,「形成連貫想法」究竟意味著什么?我們早已知道,計算在各個層面都普遍存在,這就是「計算等價性原理」給我們的啟示。但「形成連貫想法」似乎是說——大規(guī)模并行的計算活動以某種方式被「壓縮」或「整合」成了一個可被識別的、線性的「思維流」。

一開始,這在生物層面看并不顯然:我們的神經(jīng)元有數(shù)十億之多,同時工作,為什么會出現(xiàn)那種「我在想一個清晰的念頭」的現(xiàn)象?可事實上,我們的大腦具有相當特殊的神經(jīng)結(jié)構(gòu)——這是生物進化的結(jié)果——它努力把各種感官信息與內(nèi)部處理整合在一起,并最終形成一條主導的「注意線索」(thread of attention)。在醫(yī)學上,「意識缺失」的典型判定便是:雖然神經(jīng)元依舊活躍,但喪失了信息整合與序列化處理的功能,人就不再表現(xiàn)出正常的「意識」活動。

這些當然是生物學細節(jié),但它們指向一個意識的基本特征:意識不是指大腦所能進行的所有復雜計算;而是指大腦特有的那種「讓人形成統(tǒng)一、線性化體驗」的機制。

而現(xiàn)在,我們對物理項目的研究讓我們意識到:這種「獲得線性化體驗」的做法有著遠遠超出大腦和生物學范疇的深遠影響。具體來說,它定義了「物理學」——或者說,定義了「我們所認知的物理學」的規(guī)律。

我們常說,意識像智能一樣,我們只在「人類」這一特例上有明確體會。但正如我們可以把「智能」推廣到普遍的「計算復雜性」,現(xiàn)在看來,或許也能將「意識」推廣到「以某種方式對計算進行整合和線性化呈現(xiàn)」這樣一種更廣泛的概念。

在操作層面上,現(xiàn)在有了一個可能很直觀的角度,前提是我們先理解「時間」這個概念的更新。在傳統(tǒng)基礎物理的觀點里,時間往往被視作與空間相似的維度;可在我們模型中,時間與空間的地位差別極大:空間是由我們所謂的「空間原子」及其連結(jié)所構(gòu)成的超圖;而時間則是與「不斷對這些連結(jié)反復進行更新的不可約計算過程」相對應。

是的,我們會發(fā)現(xiàn)這些更新事件彼此之間存在明確的因果關系(最終由多分叉因果圖來刻畫),但許多事件可以被視為「并行發(fā)生」,要么在空間的不同區(qū)域內(nèi),要么在不同的歷史分叉中。而這樣的并行性,從概念上就與「把一切體驗都線性化」相沖突。

然而正如前文討論的,物理形式主義(無論是相對論中的參考系,還是量子力學)恰恰就是把這所有并行要素進行了合并,使它們在一個時間序列里看起來是線性的。

換言之,可以說,我們是在給所有事件安排一個單線程的更新次序,就像普通的圖靈機,而不是一次性讓所有元胞自動機(cellular automaton)并行更新,也不像一個多分叉(或非確定性)的圖靈機那樣并行展開。宇宙本身或許確實是并行演化的,但我們的「解析」與「體驗」是把它「序列化」了。而正如我們之前所見,這樣做是否能維持一致性其實并不必然,但只要有了參考系、量子框架及因果不變性的配合,便可保證不會出現(xiàn)互相矛盾的結(jié)果,并且我們也能得到「宏觀層面看符合廣義相對論和量子力學」的總體行為。

當然了,我們并不真的把所有事情都「序列化」了。看看人工神經(jīng)網(wǎng)絡對大腦工作的模擬就知道:感官處理等功能明顯有大量并行操作;可越接近我們會稱之為「思考」的地方,處理過程就越接近順序執(zhí)行。就連我們最豐富的交流方式——語言——也明顯是線性的、序列化的。

在談到意識時,經(jīng)常提到所謂的「自我意識」或「對自身思維過程的反思」。如果沒有計算的視角,這似乎很神秘;但在「通用計算」的視角下,它就幾乎不可避免。通用計算機最大的特點之一,就在于它能模擬任意計算系統(tǒng)——包括它自身。這正如我們可以在 Wolfram 語言里用 Wolfram 語言寫解釋器一樣。

「計算等價性原理」告訴我們,通用計算是普適存在的,而大腦與心智、乃至整個宇宙,都具備通用計算能力。是的,做自模擬(self-emulation)時往往會比原系統(tǒng)更耗時,但重要的是它確實能做到。

想象一下:當「心智」在思考世界時,它在做的就是建立對世界的模型(并且傾向于序列化地建模)。而當心智去思考它自身時,它也會再建一個模型。我們?nèi)粘sw驗往往始于對「外部世界」的建模,可隨后就會在這些模型之上繼續(xù)建模,層層疊加,最后未必能清晰分辨哪些信息是「來自內(nèi)部」還是「來自外部」。

把「序列化」與「意識」相聯(lián)系,還能幫助我們理解不同個體之間如何會產(chǎn)生不同的「體驗」。本質(zhì)上,這也就像對時空做不同參考系,或?qū)Ψ植婵臻g做不同量子參考系——只要系統(tǒng)有因果不變性,不同觀察者之間最終還是會形成某種一致的「客觀現(xiàn)實」。若不是宇宙中不斷進行各種交互,彼此間的體驗就不會出現(xiàn)對齊。但在這些交互下,還是會慢慢走向一致性,也正是這個過程讓我們得以凝練出某些「物理定律」,也就是廣義相對論與量子力學。

五、其他意識

前文講到的那套對意識的討論,都是基于「時間優(yōu)先」的視角:要把分散在空間——以及分叉空間——的各種并行動態(tài)「打包」為順序性的體驗。而顯然,我們?nèi)祟惖纳眢w與感官機制就特別適合這樣做:我們在物理尺度和各項常數(shù)上都站在一個對「序列化體驗」非常有利的中間位置,既不像量子效應中那樣極端分散,也不像廣義相對論中那樣大到可以引力塌縮。

舉個例子:為什么我們可以「忽略」空間的影響,而把發(fā)生在不同地點的事同步納入同一時刻來談?根本原因是光速相對于我們的尺度來說很大。我們通常關注的視覺范圍或許幾十米遠,但光只需幾十納秒就能傳到;而我們的神經(jīng)元處理一次視覺信息要花上毫秒級別。換言之,就大腦體驗而言,我們可以把空中各處的事幾乎當成「同時發(fā)生」,合并進一個「時刻」。這才讓我們腦中的世界圖景呈現(xiàn)為一個線性的「現(xiàn)在—將來」序列

可要是我們像行星那么大呢?如果大腦仍然在毫秒級別處理信息,分布在各地的信號就需要更長時間才能匯總,那么我們的體驗就很難拼成單一的「發(fā)生了什么—接下來發(fā)生了什么」的序列。

即便以人類之身,也有類似情形:譬如用嗅覺來感知世界(狗就更多依賴嗅覺),氣味分子的傳播速度遠遠小于光速,就不容易形成對空間的那種「瞬間整合」。若只靠嗅覺,就會產(chǎn)生截然不同的世界模型,說不定還要給那些氣味流動路徑定義很復雜的「規(guī)范場」之類,用來描述其中各種回旋彎繞。

如果我們再設想大腦比星球還大,延遲問題就更嚴峻。要讓它在毫秒級內(nèi)完成對全腦狀態(tài)的整合,幾乎不可能。或許「從外部」看,這根本沒法形成一個一致的體驗??伞笍膬?nèi)部」看,也許這類超大腦會憑空假設自己有一個統(tǒng)一的體驗,從而與我們完全不同地定義空間與時間。而想讓這樣的系統(tǒng)運轉(zhuǎn)自洽,恐怕至少要大幅改動我們現(xiàn)有的物理概念。

如果再極端些,腦子里有些區(qū)域甚至被「事件視界」所隔離(就像黑洞內(nèi)部),那就更難保持單一的體驗。也許只能靠「凍結(jié)」一些體驗來避免在視界處破碎。

那要是我們更小呢?比如大腦只包含幾百個「空間原子」。也許不可約性就會主導一切,而我們永遠也無法獲得對宇宙的整體規(guī)律或可預測性,更別說發(fā)展出一種「線性化意識」了。

至于「在分叉空間上的尺度」呢?我們對現(xiàn)實世界具有「確定性」的感知,意味著在我們所在的分叉空間里,我們能在一個瞬時把眾多歷史分叉「合并」成一個特定狀態(tài)。但這對宇宙的其余部分有多大影響呢?其實就像「光速」那樣,我們的模型中還存在「最大糾纏傳播速度」(maximum entanglement speed)這樣的量。它足夠大,從而在人類日常所涉及的「分叉空間」尺度上,可以讓我們放心地把一切歸到同一個時間快照,形成那種單一歷史線。

如此,我們看到「人類規(guī)模與特征」正好非常適合形成我們對意識的理解。那么還有沒有別的意識形態(tài)可能性?

這個問題相當棘手。有能力從內(nèi)部形成像我們這樣連貫、線性的體驗,固然是可能的,但它得依賴特定的生理與物理條件。換言之,如果我們想象某種與我們截然不同的意識,那不僅僅是感覺、思考方式不同,連對物理世界的根本描述都可能完全兩樣。

我們比較容易想到的是「其他動物及生物」的意識??梢_認它們?nèi)绾嗡伎?、如何體驗世界,并不簡單?;蛟S將來我們能通過某種與動物互動的高級手段(比如某種 VR 游戲)來探究;但目前我們?nèi)灾跎?。可以預期,它們的意識會與我們的不一樣,比如感官輸入各有千秋。有些通過氣味、電信號、溫度、壓力等等來感知世界;有些是蟻群、蜂群那樣的「群體思維」,信息整合速度非常慢;有些像植物固定在土里,那它們?nèi)绻嬗心撤N整合性的體驗,又會是什么樣;還有病毒一類,序列化體驗只能在一個傳染波的層面上去談……

退一步說,其實就連人類自身,身體里也不只有大腦這一種「感應整合系統(tǒng)」。比方說免疫系統(tǒng),一樣在持續(xù)對外界和自身做某種「反饋」,只不過輸入輸出與大腦截然不同。我們當然覺得把意識歸給免疫系統(tǒng)顯得很怪,可想象若我們真有一種方式進入免疫系統(tǒng)的「視角」,它或許會展現(xiàn)出另一種「內(nèi)在物理學」!

再往開闊想,還可以談地球上的全部生命,或地球自身的地質(zhì)史,或天氣等。你可以說,天氣的流體運動里也包含了豐富的計算復雜性;但它缺乏那種「整合并線性化」的機制,看不出它以單一的思維流在演化。

回到軟件和 AI 系統(tǒng),我們或許本能地認為,要想讓它們「擁有意識」,必須再做更高層次的突破,引入某些「跟人一樣的神秘火花」。但我倒覺得,也許事實恰恰相反:如果想讓系統(tǒng)盡可能挖掘「計算宇宙」的豐富性,最好讓它像底層物理那樣大量并行、甚至多分叉地開展。然而若想得到類似于「我們的意識」那樣的東西,就需要退一步,專門強制系統(tǒng)收斂為「整合并線性化」的形式。而 Wolfram 語言之所以在計算宇宙中能產(chǎn)生可讀的結(jié)果,很大程度上就是因為它是按人類思維習慣去設計的。

類似地,如果要問「那這樣系統(tǒng)的『內(nèi)在物理學』會是什么」?,因為 Wolfram 語言本來就是以人類思維為藍本,這種「內(nèi)在物理學」也就很大程度上與我們熟悉的物理相似。

由于我們的物理項目把一切都化作一個純粹形式系統(tǒng),這就讓我們思考:能不能在數(shù)學的框架下,也去談意識?譬如,想象一套僅以公理為基礎的數(shù)學形式系統(tǒng),它不斷生成定理的網(wǎng)絡,也就相當于在「元數(shù)學空間」(metamathematical space)里展開。物理與元數(shù)學之間,其實可以有很多有趣的類比:在元數(shù)學中,時間依然是時間,只不過這里指的是「連續(xù)證明新定理的過程」。而對應我們空間超圖的,則是「到某個時刻已被證明的全部定理構(gòu)成的圖」。另外也可以建構(gòu)一個多分叉圖,其中不同的推理路徑會合并成定理,就對應了量子力學的多歷史合并。

那參考系在這里對應什么?就像在物理中一樣,參考系對應的就是觀察者,只不過這個觀察者面對的是元數(shù)學空間,而不是物理空間。不同的觀察者可以以不同順序探索定理,而因果不變性擔保它們都能看到同樣的「數(shù)學真理」。這里也有類似光速的「數(shù)學影響傳播速度」,以及一種「相對論」式的結(jié)論:數(shù)學本身是一致的,只不過我們可以用不同順序去挖掘它。

這么說來,「數(shù)學意識」又是什么呢?按我們前面的思路,若想要一個類似的「參考系」,就需要把元數(shù)學空間也「序列化」,那就相當于擁有一個「嵌入式的數(shù)學家大腦」,它一次只能消化一部分定理,從而形成「序列化」的數(shù)學發(fā)展過程。比方說,在目前人類可及的數(shù)學里,任何一個所謂「人類規(guī)模的」數(shù)學定理,也許需要 10^5 左右的基本推理單元;而我們整個數(shù)學史到現(xiàn)在,大概也只證明了 3×10^6 個左右的定理。于是「數(shù)學意識」就可以視為一個「在這片有限的元數(shù)學空間里整合出一條線性化推理鏈」的過程。這樣,我們同樣能在這個抽象層面施展類似參考系的分析。

再再往上一個層級,還有一個更龐大的視野:我們不僅可以選擇在超圖的不同位置應用同一個規(guī)則,還可以選擇「所有可能的規(guī)則」。這就得到「規(guī)則多分叉圖」(rulial multiway graph),在其中的路徑分別代表我們用不同規(guī)則演化宇宙。而在這個更高層的多分叉圖中,因果不變性總是成立,也就是說,不同規(guī)則(也就是不同的物理理論)之間具有某種根本的等價性。

這是「計算等價性原理」的另一種表述:無論你用哪條通用規(guī)則去「構(gòu)造宇宙」,都能彼此模擬,只不過是換了一個「規(guī)則參考系」罷了。

意識扮演什么角色?不同的「規(guī)則參考系」可能對應完全不同的物理描述或經(jīng)驗世界。一個觀察者可能感知到的是我們那套「超圖+空間」的世界,另一個觀察者則可能覺得自己處于一個單頭圖靈機的世界里。二者的物理圖景完全互不兼容。

但他們能不能都找出自己的「序列化」路徑?理論上,也許在每種規(guī)則參考系下都存在一些可約化的區(qū)域。但這個「外星智慧」是不是正好在采樣那塊區(qū)域,就不得而知了。換句話說,要想「有用的物理規(guī)律」,就需要某些可約化性來搭橋——不一定非得靠我們這樣的「序列化體驗」去拿到。但我們現(xiàn)在確實是靠它來得到規(guī)律并進行科學歸納。

想要理解這種「高階的外星性」就很困難:他們或許使用與我們完全不同的規(guī)則參考系,乃至與我們的「可約化挖掘方式」也完全不同。對我們而言,若想識別他們在何處挖出了可約化性,會面臨很大的挑戰(zhàn),因為我們不具備同樣的「序列化意識」。換言之,我們甚至沒有合適的手段去把他們當作一種可觀測的對象。若真有外星智慧如此與我們相異,我們幾乎無法互相理解。

六、現(xiàn)狀

數(shù)百年來,關于意識的討論一直艱難而持久。但借助我們物理項目帶來的新領悟,或許能用更接近形式科學的方式把它重新審視。雖然我在此沒有做嚴謹?shù)臄?shù)學建模,但我相信,我們完全可以把這里提到的理念付諸更正式的模型,進而探討意識問題在物理領域尤其量子力學中的種種關聯(lián)。

這些模型最終需要多復雜的物理細節(jié)還不明確;也許只要在一個簡單的多分叉圖靈機里,就能研究「多分叉大腦如何感知多分叉世界」;也許一個組合子系統(tǒng)(combinator system)都能提供一些對「不同版本物理」如何成形的啟示。

重點是:我們現(xiàn)在或許真的能把意識問題轉(zhuǎn)化為更具體的數(shù)學、計算或邏輯問題,用嚴格且可操作的方式去研究。

最終,這些討論要真正落地,就需要與可行動的應用場景掛鉤,否則就可能淪為對概念或術語的爭論。比如說,在分布式計算領域,我們就一直想找更直觀的方式來描述「多點并行」問題。而從意識的角度看,我們似乎天生對分布式計算感到棘手,就是因為我們的大腦是「序列化處理」的?;蛟S借鑒物理中的做法,給分布式計算引入一種「參考系」式的抽象,可以幫助我們更好地設計與理解分布式系統(tǒng)。

同理,多分叉或非確定性計算之所以讓人難以直觀把握,恐怕也是因為我們的「意識結(jié)構(gòu)」偏向線性化。那么或許我們也要借助在量子力學中摸索出來的思路,為多分叉計算建立一套類似測量的機制,使其對我們而言可掌控。

幾年前在一個 AI 倫理會議上,我問:「在什么情況下我們會賦予 AI 『權利』和『責任』?」有位哲學家立刻回答:「當它們具有意識的時候!」但什么才算 AI 具有意識?如果采用我們上文的觀點,那答案在于:不僅有復雜計算,還要能整合并形成一條連貫的「體驗流」。可以想見,「殺死」一個擁有單一體驗流的系統(tǒng),比破壞一個「處處并行、無固定主線」的系統(tǒng),更讓人覺得這是在毀滅某種獨特存在。因為單線程的流意味著它只有一個「自我演化路徑」,這往往會讓我們更傾向賦予它「道德主體」的地位。

類似地,當我們談「可解釋 AI」,我們往往想要的不只是列出 AI 運行時的全部計算步驟——那可能過于復雜或不可約,我們還想得到一個像「故事」一樣的敘述,以一種可線性化的方式來讓我們理解。這其實就是在把 AI 的運算過程「轉(zhuǎn)譯」成一種與我們意識結(jié)構(gòu)兼容的表征。

計算等價性原理常被用來說明:在宇宙中,我們?nèi)祟惒⒉徽紦?jù)「特殊、超然」的地位;生命與智能不過是大范圍計算復雜性中的一種實例。但在意識層面上,這個道理同樣成立。意識從一般角度看可能也并不特殊,理論上有無數(shù)途徑都能「檢索」到可約化性。而我們所珍視的,只是我們自己物種特定的那種意識,也就是「把計算序列化」的特定實現(xiàn)。

或許也會有人失望地發(fā)現(xiàn):意識并不是某種高高在上的形而上之物,而恰恰是對計算行為的一種限制和簡化。不過,我個人倒是習以為常:我們想象自己在宇宙間的獨特性時,往往不是依靠某些崇高概念,而要依賴那些由生物、文明與個人經(jīng)歷所共同塑造的獨特細節(jié)——那才是我們真正的寶貴之處。

總結(jié)而言,科學的發(fā)展歷程就是在計算不可約性與可約化性之間不斷博弈:世界之所以如此豐富,全因不可約性之故;而我們要理解它,則必須在其中尋找「可約化的口袋」。現(xiàn)在看來,意識這個與我們息息相關的概念,也許正是促成我們發(fā)現(xiàn)這類可約化區(qū)域的關鍵推手之一——換句話說,也正是它塑造了我們在宏觀層面所觀察到的那些物理定律。

《一種新科學》讀書會

《一種新科學》作為Stephen Wolfram的開創(chuàng)性著作,在人工智能蓬勃發(fā)展的今天重新煥發(fā)生機。該書探討的簡單程序生成復雜性、計算普遍性和涌現(xiàn)行為等核心概念,與現(xiàn)代AI和大語言模型的基本原理高度吻合。最近社區(qū)成員韓司陽等老師積極推動《A New Kind of Science》在國內(nèi)的翻譯出版工作,所以集智俱樂部聯(lián)合社區(qū)成員韓司陽、章彥博、徐恩嶠、張江一起聯(lián)合發(fā)起,從9月1日起,每周日上午10:00-12:00開始系列的討論,歡迎大家加入讀書會,做讀書會分享或者認領翻譯任務。

本次讀書會主要是為了聚集更多對這本書和這套理論感興趣的探索者一起深度交流碰撞,并組織有能力的研究者一同將這本20年的經(jīng)典巨作翻譯成中文版;同時也是想借此機會,能夠深入重讀經(jīng)典《A New Kind of Science》,挖掘與當前人工智能和大模型研究有著深刻聯(lián)系,學習Wolfram的跨學科方法和對自然界模式的研究,為AI算法優(yōu)化和系統(tǒng)設計提供了新視角。幫助更多的學術研究者和技術應用者從更廣闊的科學哲學角度審視AI技術,深化對AI本質(zhì)的理解,并可能激發(fā)解決當前AI挑戰(zhàn)的創(chuàng)新思路,為探索AI的未來發(fā)展方向提供啟示。

詳情請見:

1.

2.

3.

4.

5.

6.